時間:2022-04-30 16:27:03
導言:作為寫作愛好者,不可錯過為您精心挑選的10篇抗震設防論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內容能為您提供靈感和參考。
摘要;文章闡述了抗震設計方法的轉變,并介紹了兩種不同設計方法的優缺點,對能量分析方法在抗震結構計算中的應用進行了分析。
關鍵詞:推覆分析方法;結構能量反應分析;地震動三要素;耗散能量
目前世界各國的抗震設計規范大多數都以保障生命安全為基本目標,即“小震不壞、中震可修、大震不倒”的設防水準,據此制定了各種設計規范和條例。依此設計思想設計的各種建筑物在地震中雖然基本保證了生命安全,卻不能在大地震,甚至在中等大小的地震中有效的控制地震損失。特別是隨著現代工業社會的發展,城市的數量和規模不斷擴大,城市變成了人口高度密集、財富高度集中的地區,一般的地震和1995年的日本阪神地震,造成了巨.大的經濟損失和人員傷亡。嚴重的震害引起工程界對現有抗震設計思想和方法上存在的不足進行深刻的反思,進一步探討更完善的結構抗震設計思想和方法已成為迫切的需要。上個世紀九十年代,美國地震工程和結構工程專家經過深刻總結后,主張改進當前基于承載力的設計方法。加州大學伯克利分校的J.P.Moehlelll提出了基于位移的抗震設計理論;日本建設省建筑研究院根據建筑物的性能要求,提出了一個有關抗震和結構要求的框架,內容包括建議方案,性能目標,檢驗性能水準等:我國學者已認識到這一思潮的影響,并在各自研究領域加以引用和研究,如王亞勇、錢鎵茹、方鄂華、呂西林分別發表了有關剪力墻、框架構件的變形容許值的研究成果,程耿東采用可靠度的表達形式,將結構構件層次的可靠度應用水平過渡到考慮不同功能要求的結構體系,王光遠把這一理論引入到結構優化設計領域,提出基于功能的抗震優化設計概念。
我國現行的結構抗震設計,主要是以承載力為基礎的設計,即用線彈性方法計算結構在小震作用下的內力、位移;用組合的內力驗算構件截面,使結構具有一定的承載力;位移限值主要是使用階段的要求,也是為了保護非結構構件;結構的延性和耗能能力是通過構造措施獲得的。結構的計算分析方法基本上可以分為彈性方法和彈塑性方法。當前在建筑結構抗震設計和研究中廣泛地采用底部剪力法和振型分解反應譜法等。這些方法沒有考慮結構屈服之后的內力重分布。實際上結構在強震作用下往往處于非線性工作狀態,彈性分析理論和設計方法不能精確地反映強震作用下結構的工作特性,讓結構在強震作用下處在彈性工作狀態下工作將造成材料的巨大浪費,是不經濟的。隨著人們認識的提高,結構的地震反應分析設計方法經過了兩個文獻的轉變:(1)靜力分析方法到動力分析方法的轉變:(2)從線性分析方法到非線性分析方法的轉變。其中動力分析方法就經過了從振型分解反應譜法到時程分析法、從線性分析到非線性分析、從確定性分析到非確定性分析的三個大的轉變。作為一種簡化實用近似方法,目前的推覆分析方法(Push—overAnalysis)受到眾多學者的重視。它屬于彈塑性靜力分析,是進行結構在側向力單調加載下的彈塑性分析。具體做法是在結構分析模型上施加按某種方式(研究中常用的有倒三角形、拋物線和均勻分布等側向力分布方式)模擬地震水平慣性力作用的側向力并逐步單調加大,使結構從彈性階段開始,經歷開裂、屈服直至達到預定的破壞狀態甚至倒塌。這樣可了解結構的內力、變形特性和能量耗散及其相互關系,塑性鉸出現的順序和位置,薄弱環節及可能的破壞機制。這種方法彌補了傳統靜力線性分析方法如底部剪力法、振型分解法等的不足并克服了動力時程分析方法過程中,計算工作量大的問題,僅用于近似評估結構抵御地震的能力。但是,傳統的推覆分析方法基本上只適用于第一振型影響為主的多層規則結構,對于高層建筑或不規則的建筑,高階振型的影響不容忽視,并且對于非對稱結構,還必須考慮正、反側反推覆的不同所帶來的影響。此外推覆分析方法無法得知結構在特定強度地震作用下的結構反應和破壞情況,這限制了它在抗震性能設計中的使用地震動能量是刻畫地震強弱的綜合指標,它綜合體現了地面最大加速度和地震持時兩個反映地面運動特性的重要因素。結構地震反應的能量分析方法是一種能較好地反映結構在地震地面運動作用下的非線性性質及地震動三要素(幅值、頻譜特性和持時)對結構抗震性能影響的方法。地震時,結構處于能量場中,地面與結構之間有連續的能量輸入、轉化與耗散。研究這種能量的輸入與耗散,以估計結構的抗震能力,是結構抗震能量分析方法所關心的問題。結構在地震(反復交變荷載)作用下,每經過一個循環,加載時先是結構吸收或存儲能量,卸載時釋放能量,但兩者不相等。兩者之差為結構或構件在一個循環中的“耗散能量”(耗能),亦即一個滯回環內所含的面積。能量等于力與變形的乘積。一個結構(構件)所耗散的地震能量多,不僅因為它承擔了較大的地震作用,還因為它產生了較大的變形。從這個意義上來看,耗能構件是用它自身某種程度破壞所作的犧牲,來維持整個結構的安全。所以,每次大的地震作用之后,人們看到那些沒有其它途徑耗散所吸收的地震作用的能量的結構,只有通過結構自身的破壞來釋放所有的多余能量。因此,結構的抗震設計應當注意保證結構剛度、強度和變形能力的協調與統一,如結構的延性設計就是在傳統的單一強度概念條件下進行的彈性抗震設計的基礎上,充分考慮結構和構件的塑性變形能力,在設防烈度下允許結構出現可能修復的損壞,當地震作用超過設防烈度時,利用結構的彈塑性變形來存儲和消耗巨大的地震能量,保證結構裂而不倒。
能量法在近半個世紀的研究中發現較快,但由于地震本身的復雜性能量與結構反應之間的關系仍需我們進行進一步的探索。
2側向剛度比的合理確定
上部砌體的側向剛度與底層側向剛度K的比值應滿足表1的要求。在確定上下層剛度比時應注意考慮以下因素。
2.1下部框架一剪力墻的側向剛度
底部側向剛度不能過大也不能太小'岡0度過大將吸收過多的地震作用,破壞嚴重同時會迫使薄弱層向上部砌體轉移而出現脆性破壞;剛度過小則形成軟弱層,地震時塑性變形過多集中在底部而發生較大破壞。底部框架一抗震墻砌體房屋自振周期一般在0.6—0.9左右,略大于場地土的特征周期,可以設計相對較小的側向剛度,適當增大結構自振周期,使結構從整體上減小地震作用。同時不宜設計過柔的下部結構,下部側向剛度過小導致結構在強烈地震下發生較大的塑性變形,同時為避免出現脆性剪切破壞,底部的地震剪力設計值應乘以增大系數,其值可取1.2~1.5,剛度越小,剪力增大系數越大。因此,上下層剛度比宜取接近下限值,底層宜盡量設置較多數量剪力墻,從而提供較大側向剛度并且剪力增大系數不至于取太大。
2.2次梁轉換的砌體墻段
對于有些工程在設計時出現次梁托上部砌體墻的情況,可能造成一些不利后果。圖1為L一1上有砌體墻,兩端支撐在KL一1上形成次梁轉換的情況,次梁轉換的受力如圖2所示。重力荷載和地震作用下上部墻體傳來軸力、彎矩及剪力。在彎矩作用下使支撐次梁的框架主梁產生附加集中力,由于程序未能很好的反映這部分作用,因此在設計中應盡量不采用次梁轉換。如無法避免時,應采取以下措施:1)過渡層墻體另外采取加強措施(參《建筑抗震設計規范》7.5.2),同時支撐框梁應加強;2)次梁一端盡量與框柱或剪力墻相連以便將上部傳遞下來的彎矩轉移給框柱或剪力墻;3)次梁轉換的墻體不宜太長從而降低其向下傳遞的彎矩。—圖1次梁轉換圖圖2轉換梁傳力圖
2.3過渡層構造柱及門窗
洞邊小墻段在計算上部砌體側向剛度時應該考慮構造柱的影響,因此在模型輸入時應輸入構造柱的布置。如果未輸入構造柱可能造成下部結構側向剛度偏柔的結果,且上下層剛度比接近下限時,就容易使下部結構形成柔軟層而不利于抗震。《建筑抗震設計規范》7.2.3條規定,剛度的計算應計及高寬比的影響,高寬比大于4時,等效側向剛度可取0.0(注:墻段的高寬比指層高與墻長之比,對門窗洞邊的小墻段指洞凈高與洞側墻寬之比)。為此,在模型輸人時應將高寬比大于4的墻段刪去以盡量接近實際受力情況。反之,則結構側向剛度偏大有可能造成下部結構設計過剛而迫使薄弱層轉移至過渡層,發生脆性破壞。
3托墻梁的設計
底部框架一抗震墻砌體房屋的鋼筋混凝土托墻梁計算地震組合內力時,應采用合適的計算簡圖。若考慮上部墻體與托墻梁的組合作用,應計入地震時墻體開裂對組合作用的不利影響,可調整有關的彎矩系數、軸力系數等計算參數。托墻梁彎矩計算時,設計中可按經驗考慮墻梁上部作用的荷載折減,一般無洞口可取0.85,有洞口可取0.95,但四層以下應全部計入組合;托墻梁剪力計算時,由重力荷載產生的剪力不折減。
4底部框架一剪力墻的設計
剪力墻的布置應遵守對稱、均勻、分散、周邊的原則,且應使上部砌體的中線與抗震墻中線重合,具有良好的整體抗傾覆和抗扭轉能力。底部抗震墻應承擔地震作用下全部地震剪力設計值,且該地震剪力設計值應乘以增大系數。由于底框結構層數不高,底部抗震墻軸壓比大都不大,一般不都超過0.3,因此剪力墻均按底部加強區的構造邊緣構件設計,即根據《建筑抗震設計規范》7.1.9條確定抗震等級后按照《建筑抗震設計規范》表6.4.5-2進行邊緣構件設計。由于全部承擔地震剪力設計值,因此要根據計算結果對墻體配置足夠的水平分布筋數量,以滿足抗剪承載力要求。當建筑層數和平面尺寸確定之后,為滿足底部抗剪承載力的要求,剪力墻的數量基本就能確定;然后再根據上下層剛度比的要求確定底層框架柱的數量和截面,柱截面宜小但應滿足軸壓比和截面配筋率的要求。布置柱時尚應考慮框架梁中心與上層墻體中線對齊的原則。
5過渡層的設計
過渡層設計的目的是使上部砌體具有良好的整體性,在地震作用下避免出現過渡層先于其他層倒塌、破壞的情況。為保證過渡層在地震作用下具有一定的整體性和傳遞水平地震力的剛度,規范要求過渡層底板為現澆混凝土板且厚度不應小于120mm,配筋雙層雙向,每個方向配筋率不小于0.25%。過渡層圈梁和構造柱的設置規范也給出了相應的規定。高度不宜小于240mm,構造柱截面不應小于240mm×240mm,截面配筋6,7度時不宜少于4+16。構造柱與墻體連接處的水平拉結筋,6,7度下部1/3樓層處應沿墻通長設置。總之,過渡層設計應嚴格遵循規范要求對其采取必不可少的構造加強措施,避免成為結構的軟肋。
6基礎設計及其他
底部框架一抗震墻砌體房屋的抗震墻應設置條形基礎、筏形基礎等整體性好的基礎。當結構采用板式樓梯時,樓梯踏步板宜采用雙層雙向配筋。
單層磚柱廠房具有選價低廉、構造簡單、施工方便等優點,在中小型工業廠肩中得到廣泛應用。磚柱廠房是以磚柱(墻)做為承重和抗側力構件,由于材料的脆性性質,其抗震性能比鋼筋混凝土柱廠房差;由于磚往廠房內部空曠、橫墻問距大,地震時的抗倒塌能力不如砌體結構的民用建筑。因此根據磚柱廠房的震害特點,找出杭震的薄弱環節,提出相應的抗震措施,提高其抗震能力是必要的。
1.地震震害及其特點:
地震震害表明:6、7度區單層磚柱廠房破壞較輕,少數磚柱出現彎曲水平裂縫:8度區出現倒塌或局部倒塌,主體結構產生破壞;9度區廠房出現較為嚴重的破壞,倒塌率較大。
從震害特點看,磚柱是廠房的薄弱環節,外縱墻的磚柱在窗臺高度或廠房底部產主水平裂縫,內縱墻的磚柱在底部產生水平裂縫,磚柱的破壞是廠肩倒塌的主要原因。山墻在地震時產生以水平裂縫為代表的平面外彎曲破壞,山墻外傾、檁條拔出,嚴重時山墻倒塌,端開間屋蓋塌落。屋蓋形式對廠房抗震性能有一定的影響,重屋蓋廠房的震害普遍重子輕屋蓋廠房,楞攤瓦和稀鋪望板的瓦木屋蓋,其縱向水平剛度和空間作用較差,地震時屋蓋易產生傾斜。
2.適用范圍及結構布置
2.1單跨和等高多跨的單層磚柱廠房,當無吊車且跨度和柱頂標高均不大時,地震破壞較輕。不等高廠房由于高振型的影響,變截面柱的上柱震害嚴重又不易修復,容易造成屋架塌落。因此規定磚柱廠房的適用范圍為單跨或等高多跨且無橋式吊車的中小型廠房,6-8度時廠房的跨度不大子15m且柱頂標高下大于6.6m,9度時跨度不大于12m且柱頂標高不大于4.5m。
2.2廠房的平立面應簡單規則。平面宜為矩形,當平面為L、T形時,廠房陰角部位易產生震害,特別是平面剛度不對稱,將產生應力集中。對于立面復雜的廠房,當屋面高低錯落時,由于振動的不協調而發主碰撞,震害更為嚴重。
2.3當廠房體型復雜或有貼建的房屋(或構筑物)時,應設置防震縫將廠房與附屬建筑分割成各自獨立、體型簡單的抗震單元,以避免地震時產主破壞。針對中小型廠房的特點,鋼筋混凝上無檀屋蓋的磚柱廠房應設置防震縫,而輕型屋蓋的磚柱廠房可不設防震縫。防震縫處宜設置雙柱或雙墻,以保證結構的整體穩定性和剛度,防震縫的寬度應根據地震時最大彈塑性變形計算確定。一般可采用50~70mm。
3.結構體系
3.1地震時廠房破壞程度與屋蓋類型有關,一般來說重型屋蓋廠房震害重,輕型屋蓋廠房震害輕,在高烈度區影響更為明顯。因此要求6-8度時宜采用輕型屋蓋,9度時應采用輕型屋蓋。人之地震震害調查表明:6、7度時的單跨和等高多跨磚柱廠房基本完好或輕微破壞,8、9度時排架柱有一定的震害甚至倒塌。因此《建筑抗震設計規范》(G8Jll一89)規定:6、7度時可采用十字形截面的無筋磚柱,8度1、2類場地應采用組合磚柱,8度3、4類場地及9度時邊柱宣采用組合磚柱,中柱直采用鋼筋混凝土柱。經過地震震害分析發現:非抗震設計的單層磚柱廠房經過8度地震也有相當數量的廠房基本完好,所倒塌的廠肩大部份在設計和施工上也存在先天不足,因此正常設計正常施工和正常使用的無筋磚柱單層廠后,在8度區仍然具有一定的抗震能力。可見對8度區的單層磚柱廠房都配筋的要求是偏嚴的,在抗震規范的修訂稿中將8度1、2類場地“應”采用組合磚往改為“宜”采用組合磚柱,允許設計人員根據不同情況對是否配筋有所選擇。一般來說,當單層磚柱廠房符合砌體結構剛性方案條件,經抗震驗算承載力滿足要求時,可以采用無筋磚柱。
3.3對于單層磚柱廠房的縱向仍然要求具有足夠的強度和剛度,單靠磚柱做為抗側力構件是不夠的,如果象鋼筋混凝土柱廠房那樣設置柱間支撐,會吸引相當大的地震剪力。使磚拄剪壞。為了增強廠房的縱向抗震承載力,在柱間砌筑與柱整體連接的縱向磚墻,以代替柱間支撐的作用,這是經濟有效的方法。
3.4當廠房兩端為非承重山墻時,山墻頂部與檁條或屋面板恨難連接,只能依靠屋架上弦與防風柱上端連接做為山墻頂部的支點,這不僅降低了房屋整體空間作用,對防止山墻的出平面破壞也不利,因此廠房兩端均應設置承重山墻。
3.5廠房的縱橫向內隔墻宣做成抗震墻,其目的充分利用培體的功能,避免主體結構的破壞。當內隔墻不能做成抗震墻時,最好采用輕質隔墻,以避免墻體對柱及柱與屋架連接節點產生不利影響,如果采用非輕質隔墻,則應考慮隔墻對柱及其與屋架節點產生的附加剪力。
3.6無窗架不應通至廠房單元的端開間,以免過份削弱屋蓋的剛度。天窗架采用磚壁承重時,將產生嚴重的震害甚至倒塌,地震區應避免使用。
4抗震承載力計算
4.1橫向抗震計算
單層磚往廠房橫向抗震計算的計算簡圖,可按下列規定選取:(1)當廠房柱為無筋磚柱或邊柱為組合磚柱、中柱為鋼筋混凝土柱時,可采用下端為固接、上端為鉸接的徘架結構模型;(2)當廠肩邊柱為無筋磚柱、中柱為鋼筋混凝士柱,在確定廠房自振周期時,磚柱下端按固接考慮,在計算水平地震作用時,磚柱下端按鉸接考慮。這主要是考宅到在地震作用下,隨著變形的不斷增加,無筋磚柱下端開裂并退出工作,囚而全部橫向地震作用由中部的鋼筋混凝土柱承擔。輕型屋蓋單層磚柱廠房的橫向抗震計算,可以忽略空間工作影響·采用平面排架進、廳計算。對于鋼筋混凝上屋蓋和密鋪望板的瓦木屋蓋廠肩,其空間作用不能忽略,應按空間分析的方法進行計算:但為了簡化,對于一定條件下的廠房可以按平面排架進行計算,考慮到其空間工作影響,對計算的地震作用效應要進行調整。
4.2縱向抗震計算
對于鋼筋混凝土屋蓋的等高多跨磚柱廠房,當考慮屋蓋為剛性時,縱向地震作用在各柱列之間的分配與柱列的側移剛度成正比:當考慮屋蓋的彈性進行空間分析時,側移剛度較大柱列分配的地震作用比按剛性屋蓋分配的地震作用小,而側移剛度較小柱列分配的地震作用比按剛性屋蓋分配的地震作用大。設計中為了利用剛性屋蓋假定時縱向地震作用分配形式簡單的優點,可以針對不同屋蓋形式對柱列的側移剛度乘以修正系數,做為縱向地震分配時的柱列剛度,并對所計算的廠房自振周期進行修正,以考慮屋蓋的彈性影響。
對于縱墻對稱布置的單跨廠房,在廠房縱向沿跨中切開,取一個柱列單獨進行縱向計算與對廠房進行整體分析結果是相同的。對于輕型屋蓋的多跨廠房雖然屋蓋仍具有一定的水平剛度,考慮到屋蓋與磚墻的彈性極限變形值相差較大,為了計算簡便,仍可假定各縱向往列在地震時獨立振動,按柱列法進行計算。
5抗震構造措施
5.1單層磚柱廠房采用鋼筋混凝上屋蓋時的抗震構造措施可參照鋼筋混凝土柱廠房的有關規定。采用瓦木屋蓋時,設有滿鋪望板的抗震能力比無望板強得多,望板能起到阻止屋架傾斜的作用。地震震害表明,未設上弦及下弦水平支撐的楞攤瓦屋蓋,屋架產主傾斜甚至倒塌的震害較多,因此要有足夠的屋蓋支撐系統,保證屋蓋沿縱向有足夠的剛度和穩定,以滿足抗震的要求。
5.2圈梁對增強廠房的整體性起到了重要作用,但預制圈梁抗震性能差,地震時在連接外容易拉斷,因此要求圈梁應現澆且在廠房柱頂標高處沿房屋外墻及承重內墻閉合。對于8、分度區還應沿墻高每隔3-4m增設一道圈梁,可提高磚墻的抗震性能,并能夠限制地震時墻體裂縫的開展,減輕墻體破壞。當地基為軟弱粘性土、液化土、新近填土或嚴重不均勻土層時,地震易出現裂縫,如果裂縫穿過廠房將使房屋撕裂,基礎頂面應設置基礎圈梁,以減輕地震災害。當圈梁兼做門窗過梁或抵抗不均勻沉降影響時,圈梁的截面和配筋除滿足抗震構造要求外,還應根據實際受力計算確定。采用鋼筋混凝土無檁屋蓋的磚柱廠房,地震時在屋蓋處圈梁下一至四皮磚的磚墻上易出現水平裂縫,因此8、9度時,在墻頂沿墻長每隔1m左右埋設1根8豎向鋼筋,并插入頂部圈梁內,以避免上述震害的產生。
5.3地震中屋架與磚柱連接不牢,柱頭產主破壞甚至屋蓋坍落的震例是較多的。為了加強屋架與磚柱的連接,柱頂墊塊應與墻頂圈梁整體澆注,屋架與墊塊的預埋件采用螺栓連接或焊接。當墊塊厚度或配筋過小時。預埋件的錨固不能滿足要求,墊塊厚度丁應小于240mm,井配置兩層直徑不小于8間距不大于100mm的鋼筋網。烈度較高時,屋蓋承受的地震作用較大,與墊塊整體澆注的圈粱受到較大的扭矩,墊塊兩側各500mm范圍內圈梁的箍筋應加密,其間距不應大子100mm。
中圖分類號:TU352 文章編號:1009-2374(2015)03-0044-02 DOI:10.13535/ki.11-4406/n.2015.0214
我國是一個地震災害比較嚴重的國家。隨著科學技術的不斷發展,我國的建筑結構抗震設計的方法隨著結構試驗、結構分析、地震學以及動力學的發展也在不斷的進步,在不斷學習國外經驗的基礎上,我國的震害調查、強震觀察的方法在不斷的成熟。但是,如何從我國的社會發展和地震環境的實際情況出發來提高建筑結構抗震性能,從而保持建筑物更加合理經濟、安全可靠,是結構抗震設計中的一項重要的任務。
1 建筑結構抗震設計中的問題
1.1 選擇建筑抗震場地的問題
如果施工的條件相同,不同工程地質條件下的建筑物在地震時會受到明顯不同的破壞程度。所以,選擇一個好的建筑場地是提高建筑物抗震性能的重要基礎,在場地選擇的過程中,要降低地震災害,盡可能地避開工程地質不良的抗震場地(比如河岸、邊坡邊緣、高聳孤立的山丘、非巖質陡坡、濕陷性黃土區域、液化土區域),選擇有利的建筑場地(比如中等風化、微風化的基巖,不含水的粘土層,密實的砂土層)。如果實在無法當避開不利區域的話,應該在場地采取抗震加強措施,應根據抗震設防類別、濕陷性黃土等級、地基液化,來采取措施提高地基的剛度和整體穩定性。比如,如果建筑地基的受力層范圍處在嚴重不均勻土層、軟弱粘性土層、新近填土時,要合理估計計算地基在地震時形成的不均勻沉降,從而采取加強上部結構和基礎的處理措施或者加固地基、樁基的措施來加強地基的承
載力。
1.2 選取房屋結構抗震機制的問題
1.2.1 房屋結構機制應有科學恰當的強度與剛度,能夠有力地規避房屋結構由于突然變化或者個別位置減弱構成薄弱位置,引發太大的應力聚集或者塑性產生變化聚集;對于或許形成的脆弱位置,應采用提升抗震水平的手段。
1.2.2 在房屋架構機制中應設計有科學的地震功能傳送通道與確定清楚的核算簡圖。另外,設置縱向房屋構件時,應盡量保持在垂直重力負荷作用下縱向房屋構件的壓應力多少平均;設置樓層蓋梁機制時,盡量保證垂直重力負載能夠通過距離最小的途徑傳送到縱向構件墻或者柱子上;設置轉換架構機制時,盡量保證從上面架構縱向構件傳過來的垂直重力負載能夠通過轉換層完成再次轉換。
1.2.3 在選取房屋架構機制時,應重視防止由于一些構件或者架構的損壞而讓總體房屋架構失去對重力負載的承受性能與抗震性能。房屋架構抗震設置的基本準則是架構應該具備內力再次分攤作用、優秀的變形性能、一定的贅余度等。進而在地震出現時,一些構件即便出現問題,其他構件仍然可以承載縱向負載,提升房屋架構的總體抗震穩固性。
1.3 房屋架構平面設置的規則性與對稱性問題
房屋的平面與立體的設置應遵照抗震理論基本設置準則,通常運用規則的房屋架構設置方案。依照房屋結構抗震設置規范的標準,對平面不規則或縱向不規則,或者兩者均不規則的房屋架構,應運用空間架構的核算模式;對樓板部分區域連接不暢或者表面凹凸不成規律時,應運用相對應的貼合樓層強度剛度變動的模型;脆弱位置應當注重相對應的內力加大系數,而且依照規范標準來對彈塑性形狀改變加以剖析,脆弱位置應采用抗震構造手段。
在房屋架構的抗震中,對稱性是不容忽視的。對稱性包含房屋平面的對稱、品質分布的對稱及房屋架構抗側剛度的對稱三個部分。保證這三個方面的對稱中心為同樣的位置是最優的抗震設置方案。國內的房屋結構中,架構的對稱性通常指的是抗側力主要架構的對稱。對稱的房屋架構有框架架構、簡體框架架構等。
房屋架構的規則性體現在以下四點:
1.3.1 在平面設置房屋抗側力的主要架構時,應當保證周圍結構與中心的剛度與強度平均分布,讓房屋的主要架構維持較強的強度與抗扭剛度,很大程度上防止了房屋在風力較大或者地震的扭矩影響下而產生很大的形狀改變造成非架構構件與架構構件的損壞。
1.3.2 在平面設置房屋抗側力的主要架構時,還應當重視保證同一主軸方向的所有抗側力架構剛度與強度位于平均形態。
1.3.3 建筑結構的抗側力主體結構沿著構成變化和豎向斷面也要保持均勻,避免出現突變。
1.3.4 建筑結構的抗側力主體結構的兩個主軸方向也要有比較接近的強度和剛度,還要有比較相近的變形特性。
總體來說,在建筑結構抗震設計中,一定要對建筑平、立面布置的規則性加以重視,在實際的工程中還應該對建筑結構抗震設計的規范規定給予高度的重視。
2 提高建筑結構抗震能力的改良方案
(1)對地震外力能量的吸收傳遞途徑進行恰當合理的布局,保證支墻、梁、柱的軸線處于同一平面,形成一個構件雙向抗側力結構體系。在地震作用下構件呈現出彎剪性破壞,有效地使建筑結構的整體抗震能力得到提高。
(2)要按照抗震等級來對梁、柱、墻的節點采取抗震構造措施,保證在地震作用下建筑物結構可以達到三個水準的設防標準。按照“強節點弱構件”、“強剪弱彎”、“強柱弱梁”的原則,來合理選擇柱截面的尺寸,注意構造配筋要求,控制柱的軸壓比,確保結構在地震作用下具有足夠的延性和承載力。
(3)進行多道抗震防線的設置。在一個抗震結構體系中,在地震作用下一部分延性好的構件可以擔負起第一道抗震防線的作用,而在第一道抗震防線屈服后其他構件才逐次形成第二、第三或更多道抗震防線,有效提高建筑結構的抗震安全性。各地區要根據所處區域的地質特征,提高抗震設防標準。
(4)在可能發生破壞性比較強的地震區域,建設、地震、科技等部門要對建筑技術規范進行嚴格的規定,從施工保障、材料選用、規劃設計、建房選址等方面來加強監督檢查和技術指導,保證建筑設施能夠符合抗震設防的基本要求。
(5)根據地震地區本身建筑物的特點來積極引用抗震減災新材料、新工藝、新技術,并且借鑒發達國家的技術和經驗,將其推廣應用到建筑抗震設計中。
(6)建筑結構抗震設計的管理者以及實施者也對建筑的抗震能力起到很大的作用。所以,必須提高抗震設計工作人員的整體素質,提升整個建筑的抗震工程
質量。
3 結語
經過多年來對建筑結構中抗震設計的研究,我國的抗震設計方法已經逐漸趨于成熟,但是還有許多需要完善的地方。我們要在嚴格按照建筑抗震規范要求的基礎上上,科學地合理地進行建筑抗震設計,保證建筑物的穩定性和可靠性,促進我國建筑結構抗震設計向著高水平方向發展。
參考文獻
[1] 方小丹,魏璉.關于建筑結構抗震設計若干問題的討論[J].建筑結構學報,2011,(12).
引言
房屋的抗震性能最大程度上取決于房屋的抗震設防標準,抗震設防標準越高,房屋的抗震性能就越強。目前,已有數百位專家在研究討論新的房屋抗震設防標準,以期修改沿用多年的房屋建造抗震標準,增強新建房屋的抗震能力。北京地區近日已率先將農房抗震要求提高到了能抵御8級地震的高標準。據測算,抗震設防標準每提高一級,建筑成本將隨之提高8%-10%。 房屋的選址是房屋抗震性能的外部主要條件,初步總結四川地震的經驗和教訓可以發現,遭遇同等強度地震的不同位置的房屋,其抗震性能有所不同。位于地質斷層附近的房屋比其他房屋更易被震塌。我國是一個地震多發國家,發生過破壞性地震的城市占全國城市總數的10%以上。因此,各地今后在房屋建筑設計與施工之前,必須充分重視房屋的選址應遠離地質斷層,防患于未然。 房屋結構設計與施工質量、房屋裝修是決定房屋抗震性能中受人為影響最大的兩個因素。在房屋結構設計中,一般而言,剪力墻結構的抗震性能優于框架結構,框架結構優于磚混結構。在施工質量中,建筑物必須嚴格根據抗震設計規范施工。 居住者在房屋裝修時不得隨意更改房屋結構,尤其是不可隨意更改房屋承重墻等一些關鍵部位,更改結構時應得到專業人士的指導或相關許可,任何擅自改動都有可能降低房屋抗震性能,造成致命隱患。
1 建筑物的重要性決定了其不同程度上的抗震性能
不同結構型式是不同建筑物功能需求和性價比所決定的,不能單單片面的說地震來臨時,哪種結構型式就一定好哪種結構型式就一定不好;因為按目前的抗震設防標準,它們有一個共同的設防目標:小震不壞 、中震可修 、大震不倒。
國家按建筑物發生災害時對人民生命財產可能造成損失的程度,按建筑物分為甲乙丙丁四類。主要的、重要的水電站、醫院、電力、通訊等生命救援保障和人員密集建筑被定為甲類或乙類,一般的住宅、辦公等均定義為乙類,設防的目標也不同:丙類建筑在設計時按設防目標進行;甲乙類建筑設計時至少要提高1度,請注意,這里均指是烈度而不是震級,這也很好理解,好的地基要比差的地基抗震性能好,處在地震活動帶的建筑自然發生地震的幾率大,抗震性能也很難保證。
2 建筑物得抗震性能首先取決于建筑物的抗震設防標準
國家根據地震發生的可能性和震害的嚴重性確定各地區基本設防烈度,這是各地區抗震設計的基本參數,主要代表地面加速度的大小。設防烈度一般分6~9度,上海地區設防烈度主要為7度,崇明、金山為6度。對具體建筑物,需要結合建筑使用功能的重要性確定建筑的抗震設防標準,即確定設計烈度和抗震等級。對一般建筑,設計烈度就是本地區設防烈度。設計烈度愈高,抗震能力愈強,但建筑物造價也愈高。
2.1 房屋結構的抗震性能與合理的抗震設計密切相關。
抗震設計就是要選擇合適的結構形式,確定合理的抗震措施,保證結構的抗震性能,確保建筑物滿足“小震不壞、中震可修、大震不倒”的抗震目標。所謂中震,指設防烈度,小震比中震小約1.55度,而大震則比中震增加約1度。合理的抗震設計主要基于先進的抗震理念、系統的分析計算和恰當的抗震措施。既要注意控制抗震指標如軸壓比、相對變形等,又要采取合適的抗震構造措施。
目前高層住宅主要采用現澆剪力墻結構、框架-核心筒或框架-剪力墻結構,具有較好的強度和變形能力,抗震性能相對較好。因此,無論板式住宅還是點式住宅,只要設計合理,都可滿足抗震要求。多層住宅大部分采用磚混結構,目前多采用現澆樓板,并采取設構造柱和圈梁等抗震措施,或者采用框架結構,大大增強了抗震能力。部分建筑外形怪異,平立面不規則,傳力體系復雜甚至需要多次結構轉換,這既增加了建筑物造價,也影響了建筑物的抗震性能。
2.2 房屋抗震性能還與施工質量等其他因素有關。因此加強施工質量監督,規范既有建筑的使用管理是十分必要的。
3 建筑物抵抗地震的能力不確定性
為了搞好抗震結構的施工,首先要了解地震力對建筑物可能引起的破壞作用。因為地震時不確定性和復雜性,我們很難用“數值設計”來有效控制結構的抗震性能,因此不能完全依賴于計算。根據目前對地震規律的認識,抗震設計的指導思想是:房屋在使用期間,對不同強度的地震應具有不同的抵抗能力,一般小震發生的可能性較大,因此,要求做到結構不損壞,這在技術上,經濟上是可以做到的。近幾年臺灣發生三次地震,福建沿海受其余震波影響,沒有造成建筑物嚴重損壞。如果要求結構遭受大震時不損壞,這在經濟上是不合理的,因此可以允許結構破壞。但是在任何情況下,不應導致建筑物倒塌,概括起來說,抗震設防的一般目標就是要做到“小震不壞,大震不倒”。從另一方面看,一個地區的基本地震烈度也是難以準確估計的,要根據當地的地址,地形和歷史地震情況等確定,因此房屋抗震能力很難確定。那就要在結構強度上和構造上下功夫,才能做到建筑物裂而不倒。這種危中脫險的工作主要依賴于良好的結構設計和施工質量。
4 施工質量和房屋抗震性能的關系
在強烈地震的作用下,要使建筑物裂而不倒,關鍵在施工過程的控制,以保證結構本身具有足夠的強度和各部件間有可靠的連接。對混合結構來說,一是砌體強度,也就是磚塊本身和砂漿標號。二是內外磚墻的咬槎以及構造柱,圈梁和墻體的連接構造。對鋼筋混凝土結構來說一是混凝土和鋼筋本身的強度。二是節點間的連接構造,兩者都和施工的質量密切相關,強度和構造連接的施工質量好,建筑就能抵抗地震,否則建筑物就要遭到嚴重破壞,以致倒塌,人民生命財產遭到嚴重損失。
5 目前影響建筑物抗震的施工質量問題
對于磚混結構的建筑物,在材料選用、施工質量上應當引起足夠重視。砌體強度不足,砂漿不飽滿,砂漿標號低,砌筑前磚塊不濕潤,冬季施工不澆水都會降低砂漿的粘結力和砌體的抗剪強度;加之砌體結構通常采用單塊的材料和砂漿砌筑,抗拉壓力低,且主要以手工操作,容易喪失承載能力。圈梁和構造柱的配筋不合理:圈梁和構造柱依靠其中的鋼筋將建筑上下各層,各片墻體連在一起,哪里連接不好,哪里就容易出問題。我們在施工現場經常發現鋼筋搭接長度不夠,鋼筋接頭該錯開的不錯開,該彎鉤的不彎鉤,鋼筋位置偏差大等等,都會直接影響到結構整體連接。 構造柱與墻體拉接筋放置不準確,構造柱混凝土振搗不密實,都直接影響構造柱的抗震能力,關系到磚混結構建筑物能否滿足抗震要求。
對于混凝土結構的建筑物,當前鋼筋混凝土結構的施工存在問題比較多,對結構的抗震性能極為不利。首先混凝土強度問題,混凝土水泥用量,水灰比和含砂率控制不嚴,對混凝土濕潤養護不重視,振搗不密實,柱頭施工縫遺留木屑、焊渣等造成柱的斷層,這些都是削弱結構支撐豎向荷載能力的重要因素,嚴重影響房屋抗震能力。
6 總結
前面談到影響房屋抗震的施工質量問題,這些都不是很難做到,只要我們在施工過程中認真負責,引起重視,發現問題及時整改,嚴格按照施工規程操作,控制好每一個分項、分部工程,絕不片面追求施工速度不顧工程質量,對人民的生命財產要有高度負責的態度。只有這樣,才能使建筑物的抗震安全性能得到進一步保證,人民生命財產免遭損失。
參考文獻:
[1]楊佑發;鄒銀生 底部框剪砌體、房屋空間彈塑性地震反應分析 [期刊論文] -振動與沖擊2003(01) .
[2]楊佑發 底部框剪砌體房屋抗震及隔震性能研究 [學位論文] 1998 .
[3]楊佑發;魏建東 結構動力分析的非線性擬動力方程法 [期刊論文] -世界地震工程2002(02) .
中圖分類號: TU761文獻標識碼:A 文章編號:
一、工程抗震及其意義
建筑工程抗震是指通過編制、實施抗震防災規劃,對建設工程進行抗震設防和抗震加固,最大限度地抵抗和防御地震災害活動。建筑物的抗震能力取決于抗震設防烈度、抗震設計和施工質量三方面,其中抗震設防烈度是基礎,抗震設計是保障,而施工質量是工程抗震的關鍵。實踐證明,在地震發生時,建筑的整體質量是保證人民群眾生命安全的最重要保障,是當前預防地震的最好辦法。
地震設防烈度是一個地區抗震設防規劃時所依據的地震烈度,由國家主管部門對建筑工程制定必須達到的抵御地震破壞的準則和技術指標。1976 年以前,唐山地區地震設防烈度為6度,而震后修改為8 度,同時期做出修改的還有北京由6 度調整為8 度,天津由6 度調整為7 度。地震防設烈度是人為規定的,需要綜合考慮地質、環境、工程重要程度等因素,以達到安全目標和經濟承受能力的平衡。
1976 年后,我國對地震災害進行了大量研究,主要成果體現在文獻[1][2][3]等標準與技術文件之中,其中《GB50011-2001 建筑抗震設計規范》對于我國抗震設計具有指導和規范雙重意義,既是建筑工程抗震設計的依據,也是建筑抗震安全性的衡量標準,是建筑抗震必須堅決遵照的規范。建筑抗震設計中的標準可歸納為“小震不壞、中震可修、大震不倒”。抗震設計一般分為承載力驗算和彈塑性變形驗算兩個階段,承載力驗算是為了保證滿足對于小震和中震的要求,而彈塑性變形驗算是對于重點薄弱部位進行檢驗,并依據檢驗結果提出應對地震的構造措施,實現對于大震的設防要求。
建筑施工質量是工程抗震的關鍵。汶川特大地震中,位于重災區的北川六漢希望小學,創造了沒有一座房屋倒塌、沒有一人因地震遭遇不測的奇跡,而承建該希望小學的承建商,在受災地區所建五棟希望小學全都不倒,足以體現工程質量在抗震中的重要作用。建筑施工中的質量問題對于抗震有重要意義,應予以特別重視。
二、抗震設防存在的問題
地震烈度是一個十分復雜、模糊和籠統的主觀的概念。這一概念產生于人們尚無有效的測量地震動物理參數的工具的時候。當時的地震學者用它來描述和比較某次地震在相關地區產生的影響程度的大小。地震烈度的概念發展至今,地震烈度表是其目前最精細的使用參照。不可否認,地震烈度表仍然是非常粗略的。由于地震烈度包括人的感受、地震動引起的響動之類無法量化的多重指標,這就導致了每次強震過后,強震區的烈度劃分總是存在爭議。由于地震烈度具有多指標綜合性,在多個指標評定結果相差較多時,如何綜合評定,這往往就取決于個人主觀決定。不僅如此,具體到衡量地震烈度的每個指標的應用同樣帶有較大的隨意性。目前的地震工程領域已經認識到包括結構類型,場地條件,震源機制在內的諸多因素對地震作用的影響。在實際的結構抗震工程中,認識較為成熟的影響因素已經考慮到結構抗震設計之中。地震烈度為設防指標顯然沒有區分種種因素造成的差異,從而也說明,在一定程度上地震烈度是一個落后的概念。總而言之,地震烈度是個十分粗略的概念,在建筑結構抗震設計中使用這一概念作為抗震設防指標是不恰當的。地震作為一個極為復雜的自然現象,地震動參數之間往往不存在明確的對應關系,事實上地震烈度和任一地震動參數之間的
對應關系更加模糊。自從20世紀30年代一50年代,人們逐漸積累了不少的地震記錄,并依靠這些資料試圖建立地震烈度與某個地震動參數的對應關系。最后的結論是:尋求地震動的任一單項參數與烈度的對應關系是徒勞的。這一事實的存在也就導致了在抗震工程中無法以地震烈度為出發點,直接合理的得到建筑結構的抗震設防參數,也無法經由合理的計算方法,將結構抗震驗算的結果回歸至地震烈度并依據三水準的設防目標來檢驗。考慮到地震烈度與地震動參數的對應關系極不明確,可以設想地震烈度與結構抗震概念設計要求和構造要求的對應關系更加不明確。很顯然,地震烈度不是目前建筑結構抗震設防技術水準可以直接把握的概念,而在本質上,地震烈度在實際抗震設計中已經在很大程度上被繞開了。以地震烈度作為抗震設防標準的指標存在著建筑結構的抗震設計與抗震設防目標的脫節現象。
三、加強建筑工程抗震設防的措施
要適度提高建筑設防等級、提高建筑設計水平和確保工程質量等方面做到有效結合。主要措施有:
(1)建筑抗震設防,確定合理的設防等級。加固舊建筑的抗震等級。確保工程質量需適度提高設防等級的.主要是地處地震帶、發生過大地震和設防級別明顯偏低的地區。對于新建建筑則有必要、有可能大面積地提高抗震能力。對原有未設防的房屋,也要普遍進行抗震鑒定和抗震加固。抗震加固不僅在地震時能大大減輕房屋的破壞、保障人員的安全,就是沒有發生地震,也在增加建筑物的安全、延長建筑物的使用年限、抗御其他災害等方面具有明顯的經濟效益、環境效益和社會效益。
(2)完善進行抗震設防的法律依據。近年來國家為了規范抗震管理工作,建立健全建筑工程抗震設防法規體系,制定完善建筑工程抗震考核配套規章。認真做好施工單位管理規范和建筑工程抗震施工管理規范等國家標準和行業標準的制定修訂工作。各地要結合
本地實際.制定和完善地方抗震設防管理審批法規規定.盡快形成國家和地方相互呼應、互為補充、比較完善的建筑工程抗震設防新體系。
(3)選擇合理的地震安全性評價標準。地震安全性評價是抗震設計的一部分。它要求所設計的工程在使用期內可能遇到幾次小的地震,工程基本無損,無需修理即可繼續使用;在難得一遇的中震下.經修理后仍可繼續使用;而在不大可能遭遇的特大地震下,可以容許工程破壞,但仍不倒塌,以保證人身安全。地震安全性評價主要包括地震危險性分析和土層地震反映,直接提供不同年限、不同概率水準的基巖與地振動工程參數。建筑工程首先要確定設防標準、設防標準定低了,工程設施安全度降低,地震時起不到抗震的效果。設防標準定高了,增加不必要的浪費,甚至工程項目因資金不足而緩建或停建。
(4)在工程建設的整個過程中抗震設防措施不容忽視。要使建筑工程真正達到能夠減輕以至避免地震災害,必須把抗震防災工作貫穿始終,就是說在選址時選擇地震危險性較小的地段作為建設場地。在抗震設計上,一定要嚴格按“二階段”的設計步驟和“三個水準”的設防目標進行設計,不得馬虎。在施工的各個環節上要全面貫徹抗震規范要求,充分體現抗震設計意圖,使建筑物防御地震的能力得到保障,從而減輕地震災害給人民生命財產帶來的損失。
(5)加大科技投入,建立工程抗震設防管理信息化平臺隨著科學技術的發展。傳統的管理手段已經不能滿足建筑工程抗震設防的需要,迫切需要地震管理部門和建筑工程部門及建筑業業務主體三方聯合起來加快建筑工程抗震設防信息化平臺的構建。應用現代的通訊設備和電子計算機技術,建立健全建筑工程場地的數據庫,逐步實現施工現場管理和監控的現代化.減少工程建設方因資金因素而降低工程抗震性能。可以通過工程抗震管理信息系統進行現代抗震設防管理和職能監督工作,確保建筑物在工程建設中抗震系數的真實性。
【參考文獻】
[1]李國強.建筑結構抗震設計[M].北京:中國建筑工業出版社,2005.
引言
新的《混凝土異型柱技術規程》(JGJl49—2006)(簡稱異型柱規程)于2006年8月頒布,改變了異型柱設計只有地方性規定而沒有國標的歷。隨之而來就是我們對規范的理解可能沒有比較深入的研究,另外《異型柱規程》有些規定比《建筑抗震設計規范》(GB50011-2~1)(簡稱抗震規范)嚴格。現就規范的幾點規定,談談個人的一點看法:
(1)異型柱結構最大適應高度
由于異型柱是一種新型的結構形式,只經過十余年的實踐。綜合考慮現有的理論研究、實驗研究成果及設計施工經驗,其房屋適用的最大高度較一般的鋼筋混凝土結構有所降低。現就《異型柱規程》與《抗震規范》對比見下表:
沈陽市抗震設防烈度為7度,設計基本加速度值為0.10g,超過40米的結構,建議采用短肢剪力墻結構。
(2)異型柱的抗震等級
由于異型柱結構的抗震性能相對于普通混凝土房屋較弱,異型柱結構的抗震等級相對于普通混凝土房屋也應較嚴格。由于異型柱結構的適用范圍較普通混凝土結構小,相應《異型柱規程》的抗震等級分類較《抗震規范》詳細。對于丙類建筑抗震設計的房屋,《異型柱規程》給出了抗震等級的確定方法,現就《異型柱規程》與《抗震規范》的異《抗震規范》現澆鋼筋混凝土房屋的抗震等級
《異型柱規程》中表3.3—1注3,當為7度(0.15g)時,建于Ⅲ、Ⅳ類聲地的異形柱框架結構和框架一剪力墻結構情形時,也按8度(O.20g)采取抗震構造措施,但于括號內所示的抗震等級形式來具體表達,需注意的是《異型柱規程》采取了“應”按表中括號所示的抗震等級采取抗震構造措施,比《抗震規范》的上述對應部分規定(“宜”按……)有所加嚴
(3)不規則異型柱結構的抗震設計應符合下列要求
1.當異型柱結構樓層豎向構件的最大水
平位移(或層間位移)與該樓層層兩端彈性水平位移(或層間位移)平均值之比大于1.20時,根據《抗震規范》有關規性,可界定為平面不規則的“扭轉不規則類型”,但《異型柱規程》規性此時控制該比值不應大于1.45(第3.2.5條第1款),較《抗震規范》相應規定“不大于1.5”有所加嚴,目的是為了為嚴格控制異型柱結構平面的不規則性,避免過大的扭轉
效應而導致嚴重的震害。
2.當異型柱結構的層間受剪承載力小于上一樓層的80%時,根據《抗震規范》有關規性,可界定為豎向不規則中的“樓層承載力突變類型”,并規定其薄弱層的受剪承載力不應小于上一層的65%,但《異型柱規程》規性此時乘以1.20的增大系數(第3.2.5條第2款),較《抗震規范》相應規定乘以增大系數1.15有所加嚴。
(4)異型柱的抗震作用計算規則
1.《抗震規范》第3.1.4條規定:“抗震設防為6度時,除本規范規定外,對乙、丙、丁類建筑可不進行地震作用計算”及第5.1.6條規定:“6度時的建筑(建造于Ⅳ類場地上較高的高層建筑除外),以及生土房屋及木結構房屋,應允許不進行截面抗震驗算。”但《異型柱規程》第4.2.3條則以強制性條文方式規定:“抗震設防為6度、7度(0.1Og、0.15g)及8度(0.20g)的異型柱結構應進行地震作用計算及結構抗震驗算。”本條是基于異型柱結構的抗震性能特點而制定的,6度設防時設計者應注意此條。
2.異型柱的雙向偏壓正截面承載力隨荷載(作用)方向不同而有較大的差異,在L形、T形和十字形三種異型柱中,以L形柱的差異最為顯著(設計者應著重加強L形柱的構造)。如根據《抗震規范》5.1.1條第一款(一般情況下(所有烈度),應允許在建筑結構的兩個主軸方向分別計算地震作用并進行抗震驗算,各方向的水平地震作用應由該方向抗側力構件承擔),則可能在某些情況下造成結構的不安全性,所以《異型柱規程》4.2.4條第一款規定, 7度(0.15g)及8度(0.20g)時尚應對與主軸成45°方向進行補充計算。
(5)異型柱的抗震變形驗算
由于異型柱結構的特殊性,《異型柱規程》對異型柱結構的彈性層間位移角限值也較《抗震規范》嚴格,現比較如下:
考慮到異型柱結構的特殊性,本人建議進行異型柱設計時彈性層間位移角應從嚴控制:框架結構【】應小于l,800,框架一剪力墻結構【]應小于1/I100。
1引言
地震是一種突發性和毀滅性的自然災害,它對人類社會的危害首先是引起建筑物的破壞或倒塌,導致嚴重的人身傷亡和財產損失;其次是引起火災、水災等次生災害,破壞人類社會賴以生存的自然環境,造成嚴重的經濟損失,產生巨大的社會影響。近十年來,地殼運動進入活躍期,世界各地都爆發了不同程度的地震,而我國更是世界上大陸地震最多的國家之一,20世紀以來,全球發生7級以上地震1200余次,其中十分之一在我國。例如,1976年7月28日的唐山7.8級地震,2008年5月12日的汶川8.0級地震,2010年4月14日的玉樹地震,都給人們的生命財產安全帶來巨大的損失。同時,由于地震破壞的后果嚴重,我國抗震規范在2008年與2010年都進行了不同程度的修正,目的是加強建筑結構的安全性。因此,為保障地震作用下人們的生命財產損失降至最低,有必要對建筑物的抗震設計進行研究,本文就高層結構的一些常用抗震設計方法進行了討論。
2結構抗震設計方法的發展
結構抗震設計方法的發展歷史是人們對地震作用和結構抗震設計能力認識不斷深化的過程,對結構抗震設計方法發展歷史進行回顧,有助于對結構抗震設計原理的認識,
結構抗震設計方法經歷了靜力法、反應譜法、延性設計法、能力設計法、給予能量平衡的極限設計方法、基于損傷設計方法和近年來正在發疹的基于性能/位移設計法幾個階段[1]。這些抗震設計方法在發展階段相互交錯與滲透,對齊進行系統化整理,結構抗震設計方法可以分為以下幾類[2]:
基于承載力設計方法
基于承載力和構造保證延性設計方法
基于損傷和能量設計方法
能力設計法
基于性能/位移設計方法
根據清華大學葉列平教授的研究,第(5)種方法在結構抗震設計中較前幾種方法優點更為突出,并且在各國規范中應用最廣泛。
3高層抗震設計的設防目標
長期的地震觀測表明,在同一地區不同強度地震的重現期是不同的。強度小的地震重現期,一般10~50年左右發生一次,即所謂頻遇地震或“小震”;強度較大的地震,重現期較長,一般100~500年發生一次,即所謂偶遇地震或“中震”;而強度特別大的強烈地震,重現期一般為數千年,即所謂罕遇地震或“大震”。
高層建筑的使用壽命一般為50~100年,高層住宅的壽命更短,因此要求結構在“大震”作用下不破壞顯然四不合適和不經濟的。這就提出了對于不同強度地震的重現期,結構應具有不同的抗震性能,即所謂抗震設防目標。目前國際上公認的較為合理的抗震設防目標是:
(1)在頻遇地震作用下,結構地震反應應處于彈性階段,結構無損壞或輕微破壞,且結構變形很小,不會導致非結構構件的破壞,震后可無條件繼續使用;
(2)在偶遇地震作用下,結構和非結構構件損傷在一定限度內,震后經修復可繼續使用;
(3)在罕遇地震作用下,結構不產生倒塌,非結構構件無脫落或落下,保證人身安全,
上述抗震設防目標與我國抗震設計規范中的“三水準”即“小震不壞,中震可修,大震不倒”是一個含義。現在的問題是這種單一的抗震設防目標已不能適應現代工程結構對抗震性能的需求。許多重要建筑對大震作用下的性能要求也不再是不倒塌,而是應滿足一定性能指標要求,以保證其仍具有一定的建筑功能和使用功能,這即是基于性能抗震設計方法研究的目的。
高層抗震設計方法的幾點討論
4.1遵循建筑抗震設計規范
建筑結構抗震規范實際上是各國建筑抗震經驗帶有權威性的總結,是指導建筑抗震設計(包括結構動力計算,結構抗震措施以及地基抗震分析等主要內容)的法定性文件。它既反映了各個國家經濟與建設的時代水平,又反映了各個國家的具體抗震實踐經驗。它雖然收抗震有關科學理論的引導,向技術經驗合理性的方向發展,但它更是具有堅定的工程實踐基礎,把建筑工程的安全性放在首位。正是基于這種認識,現代規范的條文有的被列為強制性條文,有的條文中應用了“嚴禁、不得、不許、不宜”等體現不同程度限制性和“必須、應該、宜于、可以”等體現不同程度靈活性的用詞。任何結構的抗震設計都必須以抗震規范為基礎,按其規定條文執行。
4.2高層建筑抗震設計應注意的問題
高層建筑結構應根據房屋高度和高寬比、抗震設防類型、抗震設防烈度、場地類別、結構材料和施工技術條件等因素考慮其適宜的結構體系,高層建筑的高寬比是對結構剛度、整體穩定、承載能力和經濟合理性的宏觀控制,在設計過程中應注意以下幾點:
應當注意抗震縫的設計,必須留有足夠的防震縫寬度;
平面形狀和剛度不對稱,會是建筑物產生顯著的扭轉、震害嚴重,設計中應避免這種情況,不能避免時應對抗震薄弱處進行加強;
凸出屋面的塔樓受高振型的影響,產生顯著的鞭梢效應,破壞嚴重,設計中加以注意;
高層部分和底層部分之間的連接構造是否合理;
框架柱截面太小、箍筋不足、柱子的延性和抗震能力不夠等容易導致剪切破壞或柱頭壓碎;
沿豎向樓層質量與剛度變化太大容易導致樓層變形過分集中而產生破壞;
地基的穩定性尤為重要;
伸縮縫和沉降縫寬度過小(W昂王與防震縫一切三縫合一)使得碰撞破壞很多;
不應在建筑物端部設置樓梯間,樓板有大洞口會因剛度不均勻而產生扭轉;
中間部分樓層柱子截面和材料改變或取消部分剪力墻,都會產生剛度或承載力的突變,形成結構薄弱層。
4.3采用纖維增強混凝土
對于高層建筑,混凝土材料由于其自身缺陷,地震作用下易于發生脆性破壞,引起結構損傷,因此從建筑材料角度分析,可以在某些關鍵部位采用韌性材料代替混凝土提高整體結構的吸收能量能力與抗震能力。抗震建筑材料必須具備輕質、高強、高韌性特征,例如,木材、輕鋼、型鋼、鋼筋混凝土、復合材料等都可以從某些方面達到抗震目的。而在我國,森林覆蓋面積少,人居木材占有量少,而鋼材成本較高,這些材料的使用都有相當的局限性。而在鋼筋混凝土結構的關鍵部位采用一些韌性較高、延性較好、抗性強度高的纖維增強混凝土對提高結構的抗震性能具有非常明顯的作用[3]。目前,我國的纖維增強混凝土種類繁多,例如,鋼纖維混凝土、聚丙烯增強混凝土、聚合物增強砂漿、超高韌性水泥基復合材料等,這些材料的研究與發展對高層結構的抗震也起著重要作用。
結束語
本文在回顧結構抗震設計方法發展歷史的基礎上,探究了高層結構的抗震設防標準,并討論文高層抗震設計中應該注意的問題。高層抗震是個很復雜的課題,涉及的考慮因素眾多,由于筆者參加工作時間較短,相關工程經驗較少,本文僅提供一般性的參考,如有不到之處,敬請指正。
參考文獻
白紹良. 對新西蘭、歐共體、美國、日本和中國規范鋼筋混凝土結構抗震條文的初步對比分析. 重慶大學, 2000.
小古俊介, 葉列平. 日本基于性能結構抗震設計方法的發展. 建筑結構, 2000年第6期.
0引言
地震災害是人類面臨的嚴重自然災害之一。地震具有突發性特點,至今可預報性仍然很低。強烈地震常造成人身和財產的巨大損失。我國屬地震多發國家,特別是近年來地震活動頻繁,一些特大地震已經給人類社會帶來了不可估量的損失,這就迫使工程人員不得不去深入研究土木工程結構的抗震設計理論和方法,最大限度地減少地震給人們帶來的影響。
抗震加固是對未進行抗震設防或已進行抗震設防但達不到設防標準的建筑物,進行結構補強和提高其抗震力的措施。建筑結構加固方法隨著經濟水平、技術水平和人們觀念的發展而發展,但有些構件加固方法(如加大截面法)將使結構和構件的剛度發生變化,從而引起結構動力特性、構件內力的變化以及剛度軟弱層和強度薄弱層的出現,而這些變化對結構承載力及彈塑性變形能力帶來的不利或有利影響,是目前的加固方法所沒有考慮的。因此對鋼筋混凝土結構抗震加固技術進行論述有著重要的意義。
1 鋼筋混凝土抗震常規加固技術
混凝土結構抗震常規加固方法包括加大截面加固法、外包鋼加固法、預應力加固法、改變結構傳力途徑加固法、受彎構件外部粘貼加固法以及其他加固方法等,每種加固方法各有其特點和適應范圍,應根據具體條件加以選擇。
1.1 加大截面加固法
加大截面加固法即采用增大混凝土結構或構筑物的截面面積,以提高其承載力和滿足正常使用要求的一種加固方法,可廣泛用于混凝土結構的梁、板、柱等構件和一般構筑物的加固。但由于截面尺寸加大,有時受使用上限制。
1.2 外包型鋼加固法
外包鋼加固法即在混凝土構件四周包以型鋼的加固方法(分干式和濕式兩種形式),適用于使用上不允許增大混凝土截面尺寸,而又需要大幅度地提高承載力的混凝土結構加固。當采用化學灌漿外包鋼加固時,型鋼表面溫度不應高于60℃;當環境具有腐蝕性介質時,應有可靠的防護措施。
1.3預應力加固法
即采用外加預應力的鋼拉桿(一般分水平拉桿、下撐式拉桿和組合式拉桿3種)或撐桿對結構進行加固的方法,適用于要求提高承載力、剛度和抗裂性及加固后占空間小的混凝土承重結構。此法不宜用于高溫環境下的混凝土結構,也不適用于混凝土收縮徐變大的混凝土結構。
2 改變結構傳力途徑加固法
2.1增設支點法
該方法是以減少結構的計算跨度和變形,提高其承載力的加固方法。按支承結構的受力性質又分為剛性支點和彈性支點2種。畢業論文,加固方法。剛性支點法是通過支承構件的軸心受壓將荷載直接傳給基礎或其它承重結構的一種加固方法。增設支點法適用于房屋凈空不受限制的大跨度結構加固。
2.2托梁拔柱法
該法是在不拆或少拆上部結構的情況下拆除、更換、接長柱子的一種加固方法。按其施工方法的不同又分為有支撐托梁拔柱、無支撐托梁拔柱及雙托梁反牛腿托梁柱等方案。適用于要求房屋使用功能改變、增大空間的老廠改造等結構加固。其中雙托梁反牛腿托梁拔柱,則適用于保留上柱的型鋼加固。
2.3 受彎構件外部粘貼鋼板、碳纖維或其它抗拉強度較高的材料加固法
此法是用建筑結構膠將鋼板等材料粘貼在鋼筋混凝土受彎構件表面,具有良好的共同工作性能,所占空間小、加固施工周期短、消耗材料少,其加固部位、范圍與強度可視設計構造需要而定,是近幾年來新發展的加固技術。本加固法適用于承受靜力作用的一般受彎構件,且環境溫度不應超過60℃, 相對濕度不大于70%及無化學腐蝕的使用環境中。
3鋼筋混凝土結構抗震加固新技術
3.1 結構基礎隔震技術
基礎隔震技術是在上部結構和基礎之間設置隔震裝置,阻隔地震能量向上部結構傳遞,從而減少結構地震反應的一種抗震技術。目前研究開發的基礎隔震技術主要有:疊層橡膠墊隔震、摩擦滑移隔震、滾珠及滾軸隔震、支撐式擺動隔震和混合隔震等。其中,疊層橡膠隔震支座已被廣泛應用,具有很好的應用前景。縱觀隔震技術的發展,可以看出近年來隔震技術有以下特點:
(1)隔震技術的應用范圍越來越廣,數量越來越多。隔震技術不僅在新建工程中獲得廣泛應用,而且在現有建筑的加同工程中得到應用。
(2)隔震建筑的結構形式日趨多樣化,已從早期主要應用于砌體結構、鋼筋混凝土結構發展到鋼結構、組合結構、木結構。
(3)可供選擇的隔震裝置越來越多,新的隔震方法不斷提出,并且采用混合隔震技術已經成為發展趨勢。
3.2消能隔震技術
傳統的抗震設計方法是靠結構的延性來耗散地震能量。但問題在于結構受到1次強烈地震時,結構構件在利用自身的延性耗散地震能量的同時,也會受到嚴重的損傷。為了解決這個矛盾,在結構上附加各種阻尼器,通過阻尼器大量耗散地震輸入到上部結構的能量,從而達到保護主體結構免遭破壞的目的。常用的阻尼器有金屬屈服阻尼器(Metallic Yielding Damper)、摩擦阻尼器(Friction Damper)、黏彈性阻尼器(ViscoelasticDamper)、粘滯液體阻尼器(Viscous Fluid Damper)等。消能減震技術近年來被大量應用在已有建筑物的抗震加固上,與傳統的加固技術相比主要優勢有:
(1)施工現場無濕作業,基本不影響原建筑的正常使用功能;
(2)能在保持原建筑外貌不變的前提下,實現了提高抗震能力和改善使用功能的協調;
(3)消能效果明顯,結構經過合理的設計,可以滿足各種設防烈度下的抗震要求;
(4)可以有效地節約經費和縮短工期。
3.3 高性能鋼絲網復合砂漿薄層(HPFL)加固技術
高性能鋼筋網復合砂漿薄層(HPFL)加固混凝土結構,是指對混凝土構件進行表面處理后,鋪設鋼筋網,再粉抹或噴射上高性能復合砂漿,使加固層與原構件共同工作,達到提高構件工作性能的目的。
采用高性能水泥復合砂漿鋼筋網薄層加固混凝土構件能有效提高構件的承載力、剛度、抗裂性和延性。畢業論文,加固方法。畢業論文,加固方法。該加固方法與碳纖維加固法相比具有施工簡單,經濟實用的優點,在結構工程加固中的應用前景十分廣闊。畢業論文,加固方法。畢業論文,加固方法。
隨著抗震技術理論的不斷發展和完善,抗震加固方法已從傳統的方法不斷趨向多樣化。畢業論文,加固方法。目前新發展起來的減震控制技術在工程應用上有明顯優勢,為建筑的抗震設計和抗震加固提供了一條嶄新的途徑,它克服了傳統結構“硬碰硬”式的抗震設計方法,具有概念簡單、減震機理明確、減震效果顯著和安全可靠的特點。
參考文獻:
[1]李科,魏延良.鋼筋混凝土結構的抗震加固方法述評[J]. 地震工程與工程振動, 2005, 25 (4):126—129.
[2]郭健.鋼筋混凝土結構加固改造方法的研究及工程應用[D]. 長沙:湖南大學2005.
[3]衛龍武,呂志濤.建筑物評估加固與改造[M]. 南京:江蘇科學技術出版社,1992.
[4]趙彤,謝劍.碳纖維布補強加固混凝土結構新技術[M]. 天津:天津大學出版社, 2001.
[5]吳英健.建筑物抗震加固[M]. 長春:長春出版社, 1991.
[6]薛彥濤,范蘇榕.傳統抗震加固技術與抗震加固新技術的介紹[J]. 工程建設與設計, 2006, 38(8):19—22.
1 引言
地震給人類造成的最大危害是房屋倒塌,危度生命和財產安全。磚房在歷次地震中的震害很嚴重,農村、城鎮房屋建筑的主體為多層砌體結構。在地震力的作用下,磚結構易發生脆性的剪切破壞,從而導致房屋的破壞和倒塌。全國城鎮民用建筑中,以磚砌體作為墻體材料的占90%以上,多層砌體(含底框磚房)所占(面積)比例達89%。抓好抗震設防地區建設工程的抗震設計,對減輕地震災害有積極的作用。因此加強抗震地區合理的進行結構抗震設計是十分重要的工作。
2 農村房屋設計中存在的主要問題
(1)在建多層砌體住宅中,房屋出現超高現象。有些底層還出現店面屋
(2)有的房屋為設置大客廳,犧牲門間墻寬度,開大門洞,大門洞間墻寬僅有240mm,并將陽臺做成大懸挑從而擴展客廳面積,當部分地方尺寸滿足不了要求,也不注意采取措施,采用增大截面及配筋的構造柱替代磚墻肢,把布局改得亂七八糟的,不僅不美觀,平面改成層次不齊,墻體沿豎向布置上下不連續。
(3)在房屋設計中沒有對抗震承載力進行計算。
(4)房屋在抗震設計中,采取的抗震措施不到位。很多設計不完整,設置不足,細節不清楚,不管能實效不,就靠圖紙來施行。
(5)在建多層樓房屋中,為了滿足部分大空間需要,底層或頂層采用“混雜”結構體系的,在底層或頂層局部采用鋼筋砼內框架結構,有的僅將構造柱和圈梁局部加大,當作結構的框架。
3.農村建筑抗震設計的基本原則
(1)選擇對抗震有利的場地和地基,從地形地貌看,應選擇地勢平坦開闊的地方作為建筑場地。
(2)合理規劃,避免地震時發生次生災害。房屋不要建得太密,房屋的間距以不小于1~1.5倍房屋的高度為宜。
(3)抗震結構方案一般應采用矩形、方形、圓形的平面布置。要選擇經濟合理的設計方案
(4)保證結構的整體性,并使結構和聯結部分具有較好的塑性。
(5)盡量不做建筑突出屋面的磚煙囪、女兒墻等,以免引起房屋破壞
(6)減輕建筑物的自重,降低它的重心位置。建筑物所受的地震荷載的大小和它的重量成正比。減輕建筑物的重量,是減少地震荷載最經濟最有效措施。
(7)購置正規合格材料。材料強度應達到設計要求,按設計圖紙施工,并嚴格按照施工規范施工。
4農村房屋抗震設計
4.1房屋坐落設計,布局要合理
房屋布局要緊湊,美觀合理。盡量設計為正房,從而加大才光亮。區位選址要合理,建筑物與周圍環境相協調,有足夠的人均建筑面積,充分利用土地資源,使住宅具有足夠的抵抗自然災害能力。房間設備亮度足夠,通風良好,南北朝向為佳,朝向的間距在凈高1.5倍以上。房屋總高度與總寬度的最大比值,不能超過抗震規范要求。
4.2結構體系設計
首先應采用橫墻承重或縱橫墻共同承重的結構體系。縱橫向應應具有合理的剛度和強度。對出現薄弱的地方應采取相應措施提高其抗震能力。墻體布置應滿足地震作用有合理的傳遞途徑。同一結構單元不應采用磚房與底框磚房或內框架磚房或框架結構等“混雜”的結構類型。應采用相同的結構類型。
4.2.1外墻維護設計。優先采用陶粒空心砌塊、陶粒聚苯砌塊作為外墻圍護。
4.2.2窗戶設計。要針對地區特點、窗的位置、朝向及室外遮擋等情況,進行合理的設計。農村住房可采用現行建筑設計規范中規定的窗地比。科技論文。窗應布置在房間或開間中部。這樣可以使室內照明度均勻,窗臺高度高度一般為900mm,不能過高或過低。科技論文。
4.2.3抗震設計。抗震性能好壞取決于建筑地點、地質條件;建筑物的設計是否符合抗震設計規范;施工質量的優劣。建造中適當配以構造柱、圈梁及拉結筋,以增強建筑物的抗震能力。
4.2.4平、立面布置。有的沒抗震設計理念,為開大門洞,縮小門間墻寬度。建筑的平面布置和抗側力結構的平面布置要對稱,有規則。縱、橫墻沿平面布置不能對齊的墻體較少,樓梯間不宜設在房屋的轉角處,房屋轉角處的門窗間墻承受雙向側向應力,其局部尺寸應不小于lm;其余外縱墻的門窗間墻局部尺寸部分不滿足1m要求時,其限值可放寬到0.8m;內墻門間墻局部尺寸不滿足要求時,可用設構造柱來滿足。建筑的立面和豎向剖面力求規則,結構的側向剛度宜均勻變化,墻體沿豎向布置上下應連續,避免剛度突變。當房屋的立面高差較大、錯層較大,采用防震縫將結構分割成平面和體形規則的獨立元。雖然磚砌體與構造柱和圈梁可以增加房屋的延性。但它們不能同時發揮作用。
4.3抗震計算
抗震計算是抗震設計中的重要內容,是保證滿足抗震承載力的基礎。對平面和豎向不規則的多層磚房采用考慮地震扭轉影響的分析程序。多層磚房的抗震計算可采用底部剪力法。
4.4抗震措施
為保證房屋在地震中有良好的抗震能力,以下介紹了幾點抗震措施內容。
4.4.1構造柱和圈梁的設置
現在農村很多房屋是多層砌體房屋。對橫墻較多或較少的要采取不同設置,對橫墻較少的應根據房屋增加一層或二層后的層數。對橫墻較多應按要求設置構造柱。對橫墻承重或縱橫墻共同承重的裝配式鋼筋砼樓、木樓、屋蓋應按抗震規范要求設置圈粱。圈梁的截面和配筋不能太大。
4.4.2構件間的連接措施
(1)構造柱與樓、屋蓋連接:當為現澆樓、屋蓋時,在樓、屋蓋處設240mmx120mm拉梁與構造柱連接。為屋蓋時.構造柱應與每層圈梁連接。
(2)構造柱與磚墻連接:構造柱與磚墻連接處應砌成馬牙槎。并沿墻高每隔500mm設2Φ6拉結鋼筋,每邊伸入墻內不小于1m。
(3)墻與墻的連接:抗震設防烈度為7度時,層高超過3.6m或長度大于7.2m的大房間,外墻轉角及內外墻交接處,當未設構造柱時,應沿墻高每隔500mm設2Φ6拉結鋼筋,每邊伸入墻內不小于lm。
(4)屋頂間的連接:突出屋面的樓梯間,構造柱應從下一層伸到屋項間頂部,并與頂部圈粱連接。
(5)后砌墻體的連接:應沿墻商每隔500mm設2Φ6拉結鋼筋與承重墻連接。每邊伸入墻內不小于0.5m。抗震設防烈度為8度到9度時。長度大于5.1m的后砌墻頂,應與樓、屋面板或梁連接。科技論文。
(6)欄板的連接:磚砌欄板應配水平鋼筋,并且壓項臥梁應與砼立柱相連。
(7)構造柱底端連接:構造柱可不單獨設基礎,但應伸入室外地面下500mm,或錨入室外地面下不小于300mm的地圈梁。
4.4.3懸臂構件的連接
(1)女兒墻的穩定措施:抗震設防烈度為6~7度時,240mm厚無錨固女兒墻(非出入口處)的高度不能超過0.5m,當超過時,女兒墻應按抗震構造圖集要求采取措施。女兒墻的計算高度可從屋蓋的圈梁頂面算起。當屋面板周邊與女兒墻有鋼筋拉結時。計算高度可從板面算起。
(2)懸挑構件:懸臂陽臺挑梁的最大外挑長度不能大于1.8m.不應大于2m。并且不能采用墻中懸挑式踏步或豎肋插入墻體的樓梯。
5農村新建房屋的措施
新建房屋要從當地環境、設計方案、機構、材料、人員等方面進行控制,從而提高房屋的施工質量和房屋抗震水平。
對于當地的環境做一個系統的調查,做到因地制宜。合理采用設計方案,加強新型房屋結構的抗震能力的技術措施。在房屋建造區域建立地勘資料,為農民服務。作為地震行政主管部門應加強對農民地震知識的宣傳,加強地震防范意識。對于建筑的用料要嚴格進行控制,防止使用不合格的建筑材料,以免建造質量低劣的房屋。無論是村民還是施工人員應具備一些基本的抗震知識。
6.結束語
隨著我國農村經濟水平的提高,農村住宅數量越來越多,越來越多的農民建新房,多層房屋,在建房中,應重視房屋抗震設計中的各個環節,將工程質量放在首位,嚴格按照施工規范要求施工,加強規劃、設計、施工方面的管理,從而降低房屋的地震程度。
參考文獻:
[1]柴旭輝.村鎮民房抗震能力的現狀及加強措施[J].山西建筑,2005,1(1):50―51.
[2]姚謙峰,蘇三慶.地震工程[M].西安:陜西科學技術出版社,2001.293―294.